Spiking networks and their rate-based equivalents: does it make sense to use Siegert neurons?
نویسندگان
چکیده
Neuronal simulations fall in two broad classes: ones that use spiking neurons and ones that don’t. While spiking models match biology better than rate-based systems, computationally they can be quite expensive. The literature offers some attempts to find and use rate-based neuron models that capture important properties of spiking units. One of the most rigorous approaches [1] approximates the output rate of leaky integrate-and-fire neurons (LIF) for Poisson input trains by analyzing the subthreshold activity of the neuron [2]. This approach, the Siegert neuron, is shown in Fig. 1.
منابع مشابه
Improving the Izhikevich Model Based on Rat Basolateral Amygdala and Hippocampus Neurons, and Recognizing Their Possible Firing Patterns
Introduction: Identifying the potential firing patterns following different brain regions under normal and abnormal conditions increases our understanding of events at the level of neural interactions in the brain. Furthermore, it is important to be capable of modeling the potential neural activities to build precise artificial neural networks. The Izhikevich model is one of the simplest biolog...
متن کاملConversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification
Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-...
متن کاملNetworks of spiking neurons: The third generation of neural network models
The computational power of formal models for networks of spiking neurons is compared with that of other neural network models based on McCulloch Pitts neurons (i.e. threshold gates) respectively sigmoidal gates. In particular it is shown that networks of spiking neurons are computationally more powerful than these other neural network models. A concrete biologically relevant function is exhibit...
متن کاملNetworks of Spiking Neurons :
The computational power of formal models for networks of spiking neurons is compared with that of other neural network models based on McCulloch Pitts neurons (i.e. threshold gates) respectively sigmoidal gates. In particular it is shown that networks of spiking neurons are computationally more powerful than these other neural network models. A concrete biologically relevant function is exhibit...
متن کاملA reanalysis of “Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons”
Neuronal activity in the central nervous system varies strongly in time and across neuronal populations. It is a longstanding proposal that such fluctuations generically arise from chaotic network dynamics. Various theoretical studies predict that the rich dynamics of rate models operating in the chaotic regime can subserve circuit computation and learning. Neurons in the brain, however, commun...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011